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Image Properties of List-Mode Likelihood
Reconstruction for a Rectangular Positron Emission

Mammograph With DOI Measurements
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Abstract—A positron emission mammography scanner is under
development at our laboratory. The tomograph has a rectangular
geometry consisting of four banks of detector modules. For each
detector, the system can measure the depth of interaction informa-
tion inside the crystal. The rectangular geometry leads to irreg-
ular radial and angular sampling and spatially variant sensitivity
that are different from conventional positron emission tomography
(PET) systems. We adapted the theoretical analysis that we had de-
veloped for conventional PET systems to the list-mode likelihood
reconstruction for this tomograph. The local impulse response and
covariance of the reconstruction can be easily computed using the
fast Fourier transform. These theoretical results are also used with
computer observer models to compute the signal-to-noise ratio for
lesion detection. The analysis reveals the spatially variant resolu-
tion and noise properties of the list-mode likelihood reconstruc-
tion. The theoretical predictions are in good agreement with Monte
Carlo results.

Index Terms—Image analysis, MAP estimation, positron emis-
sion tomography (PET).

I. INTRODUCTION

A rectangular positron emission tomograph (Fig. 1), dedi-
cated to imaging the human breast, is under development

at our laboratory [1]. The tomograph consists of four banks of
detector modules (two banks of 33 modules left and right and
two banks of 3 4 modules top and bottom). Each module con-
sists of an 8 8 array of 3 3 30 mm lutetium oxyorthosil-
icate (LSO) crystals. The maximum field of view (FOV) of the
system is 96 72 72 mm . Each detector module is coupled
to an 8 8 photodiode array at the front and a photomultiplier
tube (PMT) at the end [2]. Using the ratio between the sig-
nals from the photodiode and the PMT, the system measures
the depth of interaction (DOI) of the photon inside each crystal
and encodes it with three bits. Each detector is placed in coinci-
dence with all detectors in the other three banks, giving rise to
172 million possible lines of response (LORs).

The data from the new tomograph are stored in list-mode
format because the total number of detections will generally be
far less than the total number of LORs. We have developed a
list-mode likelihood reconstruction algorithm for the tomograph
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Fig. 1. PEM geometry.

[3]. The DOI information was explicitly modeled in the forward
projection for each LOR. The rectangular geometry leads to ir-
regular radial and angular sampling and spatially variant sensi-
tivity that are very different from conventional positron emis-
sion tomography (PET) systems. Therefore, it is of importance
to study the image properties of the reconstructions. We adapted
the theoretical analysis that we had developed for conventional
PET systems [4], [5] to the list-mode likelihood reconstruction
for this tomograph. The local impulse response and covariance
of the reconstruction can be easily computed using fast Fourier
transform (FFT) techniques. These results can then be used with
computer observer models to compute the signal-to-noise ratio
(SNR) for lesion detection.

II. THEORY

A. List-Mode Likelihood Reconstruction

Histogrammed PET data are generally modeled as a collec-
tion of independent Poisson random variables. By treating the
detections in each LOR separately, we can derive the appropriate
log-likelihood function for list-mode data [3]

(1)
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where
mean activity inside theth voxel of the unknown
image;
probability of detecting an event from theth voxel
in the th LOR;
index of the LOR of the th detection;

;
total number of detections;
total number of image voxels.

Randoms and scatters are ignored in this model.
The maximum likelihood (ML) estimate can be found by

maximizing (1). A popular ML algorithm for PET reconstruc-
tion is the expectation maximization (EM) algorithm [6], [7].
However, the ML solution is unstable (i.e., noisy) because the
tomography problem is ill-conditioned. Hence, some form of
regularization (or prior function) is needed to reconstruct a rea-
sonable image. The prior function used in [3] is a Gaussian prior
whose logarithm is of the form

(2)

where
smoothing parameter;
estimated mean of the unknown image;
positive definite (or semidefinite) matrix.

Combining the likelihood function (1) and the image prior
(2), the reconstruction is found as

(3)

For further simplification, is chosen to be a diagonal ma-
trix, so the EM algorithm can be used to solve (3). The EM up-
date equation is [3]

where is the th element of .

B. Approximation of Local Impulse Response and Covariance

Since the estimator (3) is nonlinear, its image properties are
object dependent. Therefore, we study the image properties lo-
cally for each voxel using the local impulse response and co-
variance. The local impulse response of theth voxel is defined
as

(4)

where
reconstruction of a random data set generated by the
source distribution ;
expectation;
th unit vector.

One scalar measure of resolution is the local contrast recovery
coefficient (CRC), defined as the peak value of the local impulse
response, i.e., .

Using the results derived in [5] and noting that matrixis
diagonal, we can approximate in the following compact
form:

(5)

where is the Fourier trans-
form of the local invariant approximation1 of the th
column of the Fisher information matrix defined as

, and represent
the Kronecker form of the FFT and its inverse, respectively.

is the detection probability matrix, with the th element
being . Then the is

(6)

Similarly, the th column of the covariance can be approximated
by

(7)

and the variance at voxelas

(8)

Interested readers are referred to [5] for details in the deriva-
tion. The major approximations used are the first-order Taylor
series expansion and the locally shift-invariant approximation.
Thus (5)–(8) work best when the log-posterior density func-
tion is locally quadratic and has compact support and is
shift-invariant within its support.

A Note on FWHM: For a linear algorithm, resolution is
characterized by measuring the full-width at half-maximum
(FWHM) of the point spread function. Generally, the noise
level is correlated to the FWHM: the larger the FWHM, the less
the noise. However, this is not strictly true for statistical recon-
struction. An example is the regularized ML reconstruction we
use here. Considering (5), whenis very large ,
we get

(9)

As increases, the amplitude of decreases, and so does the
noise level [see (7)], but the FWHM of remains the same
because the shape of is determined by
and is independent of. In this case, even though the MAP re-
construction is pulled toward the prior mean, the significant el-

1���(j) is computed as follows: 1) compute the image of

PPP diag p(i; j)x PPPeee and shift the maximum value to the image
center; 2) make the image symmetry so that its Fourier transform coefficients
are real; and 3) take the Fourier transform and set any negative value to zero.



QI et al.: IMAGE PROPERTIES OF LIST-MODE LIKELIHOOD RECONSTRUCTION 1345

ements of always have a finite (and relatively small) sup-
port. Hence (5)–(8) still hold for large here. Note, this may
not be true for other priors.

C. SNR of Lesion Detection

Combining these results with computer observer models [10],
we can derive an approximate theoretical expression for SNR
of detecting a cancerous lesion in the reconstructed images [9].
For each reconstruction, a computer observer computes a test
statistic based on some numerical model and compares the
statistic to a decision threshold: if exceeds the threshold,

is determined to have a lesion; otherwise, it is not. The lesion
detectability can be measured by the SNR of the computer ob-
server that is defined as

SNR (10)

where and are the ensemble means of the test statistics of
the reconstructions with and without a lesion present, respec-
tively.

One simple observer model is to use the maximum contrast at
the lesion location as the test statistic. For a unit voxel lesion (the
lesion that is equal to the unit vector), the SNR of this contrast
observer is just the contrast-to-noise ratio (CNR), defined as [4]

CNR (11)

The contrast observer is generally considered as “too simple,”
but we will show later that it achieves the maximum SNR in
lesion detection here.

Another popular observer model is the nonprewhitening
(NPW) observer, which computes the following test statistic
[10]:

(12)

where denotes the background andthe unit voxel lesion.
The SNR of the NPW observer is

SNR

(13)

where is the covariance matrix of. Here we assume that the
lesion is so small that its presence does not change the covari-
ance of the reconstruction.

By assuming that the covariance around voxelis locally
stationary, in (13) can be approximated by

(14)

Note that the above approximation is dependent on the location
of the lesion.

(a)

(b)

Fig. 2. (a) Plots of CNR as a function of� for the ten selected points of interest.
(b) Plots of SNR as a function of� for the ten selected points of interest.

Substituting (5) and (14) into (13), we get [9]

SNR

(15)

In Fig. 2, we plot the performance of the two computer ob-
servers as a function of smoothing parameter with .
Each curve corresponds to a point of interest selected in Sec-
tion III-B. The s for each LOR were computed as de-
scribed in [3] with 729 line integrals and including self-attenu-
ation and crystal penetration effects. The s are normalized
so that for all . Therefore, the maximum
SNR of any linear observer (achievable with the prewhitening
observer) is one. This maximum value will be increased by the
increase in count level and lesion contrast in real situations. The
plots show that the CNR monotonically increases asincreases
and reaches the maximum (1.0) whenis very large; on the
other hand, the SNR reaches its maximum value (around
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(a) (b) (c)

Fig. 3. (a) The transaxial view and its center horizontal profile, (b) coronal view and its center vertical profile, and (c) sagittal view and its center horizontal
profile of the sensitivity image through the voxel of (25,19,19). Note that each view is individually scaled.

0.9) when . The contrast observer outperforms the NPW
observer in detecting a unit voxel lesion. Moreover, the con-
trast observer achieves the best performance in detection that is
generally only achievable with the prewhitening observer. Note,
however, that these plots are only valid for the prior used here
(diagonal matrix ). For other priors, the monotonic increase
CNR may not exist (see [4, Fig. 3] for examples of CNR for
pairwise difference priors). This may indicate that the contrast
observer is perfectly suitable for detecting lesions in a uniform
background. We plan to verify this with receiver operating char-
acteristic (ROC) studies.

III. SIMULATIONS

For breast imaging with F-18-labeled deoxyglucose (FDG),
we can assume that the FOV is filled with uniform activity and
that features such as cancerous lesions account for a small frac-
tion of the radioactivity. Therefore, we used a uniform flood
source as background. For simulations of acquired data, a linear
attenuation coefficient of 0.01 mm was used for self-atten-
uation, and a linear attenuation coefficient of 0.1 mmwas
used for crystal penetration. The total number of detections from
the background was about 2.3 million, calculated by assuming
a 1-min scan of a subject weighting 70 kg, and an injection of
1 mCi of FDG that was uniformly distributed inside the body.
List-mode data were generated by tracing the two back-to-back
photons generated by each positron annihilation. Photons that
interact in any way in the field of view are assumed undetected,
and photons that interact in the detectors are assumed to do so
once in a single well-defined depth decoded portion of a scintil-
lator crystal. The images were reconstructed with 4836 36
2 mm cube voxels using the algorithm described in [3]. The

s for each event were computed using 729 line integrals.
The algorithm was run until convergence, which was defined

(a)

(b)

Fig. 4. Surface plots of the measured local impulse response functions. (a)
Five points of interest in the axial center plane and (b) five points of interest in
the third plane from the axial boundary.

when the absolute value of the relative change of each voxel be-
came less than 0.0001.
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A. Spatially Variant Sensitivity

We study the spatially variant sensitivity of the rectangular
tomograph by computing the diagonal elements of the Fisher
information matrix for a uniform background

(16)

where is the sum over all possible LORs and . Note
. It partly controls the resolution and noise

tradeoff, as shown in (5)–(8), and is different from the photon
detection sensitivity in (1).

The result is shown in Fig. 3. Clearly, the four corners in the
transaxial view have the highest sensitivity because the detectors
are closer to each other and hence the projection lines that inter-
sect them pass through very few other voxels. The next level of
sensitivity is the set of voxels near the detector face because of
a similar reason. The top and the bottom axial planes have the
least sensitivity.

The highly variant sensitivity determines the spatially variant
resolution and noise properties in reconstructions. If we can as-
sume that the for all the voxels have the
same shape and the only difference between them is their mean
value, i.e.,

(17)

where is the normalized frequency response with
, then (6) and (8) can be changed to

crc (18)

var (19)

It shows that the CRC at voxel is controlled by ,
and the variance is controlled by both and itself.
Both of them are spatially variant if is constant for all
s. If, however, we choose , then CRC is constant

for all voxels, and the variance is inversely proportional to
the sensitivities . This property is desirable because the
spatial variation of CRC is removed, and the variation of
variance is easier to predict as well. Therefore, we use this
weighting scheme in the following reconstructions.
Although the assumption (17) does not strictly hold in real
situations, it is a reasonable approximation, as shown in the
following simulation results.

B. Local Impulse Response

We selected ten points of interest in the FOV—five in the
center axial plane and five in an off-center axial plane—for
studying local impulse response functions. We chose the
smoothing parameter . First, the local impulse re-

sponses were measured by computing the difference between
the reconstruction of the background plus a point source and
the reconstruction of the sole background. In this study, we
only used one list-mode data set for the uniform background
(2 million events) and did not average over an ensemble of
reconstructions. However, the point sources were chosen to
have relatively high count (10:1 ratio) so that the noise in the
measured local impulse response function should be small.
Fig. 4 shows the surface plots of the measured local impulse
response functions. Each plot was a summation of five individ-
ually computed local impulse response functions in the same
axial plane. Despite the spatially variant sensitivity, the local
impulse responses shown in Fig. 4 have nearly constant CRCs.
This shows the effectiveness of the weighting of .
If , the effective smoothing parameter for each point
would be , as shown in (18). Hence the CRC would be
spatially variant as a function of : the center plane would
have higher CRCs than the axial boundary plane, and within
each plane, the corner voxel would have higher CRC than other
locations.

Secondly, we compute the local impulse response functions
using (5). Fig. 5 shows the comparison of the contour plots
of the measured local impulse response functions and the
theoretical approximations using (5) for the five points in the
axial center plane. It shows that the theoretical approximations
closely match the measurements. The different shape of the
local impulse response for different points shows that the
assumption in (17) does not strictly hold. In addition, if the
background is not uniform, more mismatch could be expected
for locations near the structural boundaries because their local
impulse response functions would have more irregular shapes.

C. Variance

We computed the voxel-wise variance image using 200 in-
dependent Monte Carlo reconstructions and compared with the
theoretical prediction from (8). The smoothing parameterwas
50. Fig. 6 shows the transaxial, coronal, and sagittal views of
the relative standard deviation images through the center voxel
in the FOV. Fig. 7 shows the comparison of two profiles through
the relative standard deviation images. Strictly speaking, com-
puting the variance image using (8) requires the computation
of for all the voxels. This would require a large amount
of computing time. Here we used the of the center voxel
in each axial plane for all the voxels inside that plane. This ap-
proximation caused underestimation of the variance around the
corner regions, as shown in the transaxial view in Fig. 6. In gen-
eral, the Monte Carlo results are in good agreement with the
theoretical predictions.

As both Monte Carlo and theoretical results show, the vari-
ances are not uniform across the whole FOV. Instead, they are
nearly inversely proportional to the s, as shown in (19). If

is used, then the variance would be less spatially variant.

IV. CONCLUSION

We have adapted the theoretical analysis we developed for
conventional systems to the new rectangular PEM that has ir-
regular radial and angular sampling. The results allow fast com-
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(a)

(b)

(c)

(d)

(e)

Fig. 5. The transaxial (left column), coronal (center column), and sagittal
(right column) contour plots of the measured local impulse response (top row)
and the theoretical approximations (bottom row) for the five points of interest
in the axial center plane: (a) point (2, 2, 18); (b) point (12, 8, 18); (c) point (24,
18, 18); (d) point (36, 18, 18); (e) point (46, 18, 18). The innermost, middle,
and outermost contours correspond to 0.5, 0.1, 0.01 of the maximum of each
response, respectively.

Fig. 6. Comparison of the relative standard deviation images from Monte
Carlo reconstructions (top row) and theoretical predication (bottom row).
From left to right, the images are transaxial, coronal, and sagittal views of the
standard deviation images through the center voxel.

(a)

(b)

Fig. 7. Comparison of the relative standard deviation profiles: (a) horizontal
profiles through the center of the transaxial view in Fig. 6; (b) vertical profiles
through the center of the sagittal view in Fig. 6.

putation of the local impulse response function and covariance.
Computer simulation results reveal good agreement between the
theoretical approximations and the Monte Carlo results. The
theoretical results have also been used to compute SNR for le-
sion detection. Future work will include modeling randoms and
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scatters in reconstruction and validating the results with ROC
studies and real data from the scanner.
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